N-channel hidden Markov models for combined stressed speech classification and recognition
نویسندگان
چکیده
Robust speech recognition systems must address variations due to perceptually induced stress in order to maintain acceptable levels of performance in adverse conditions. One approach for addressing these variations is to utilize front-end stress classification to direct a stress dependent recognition algorithm which separately models each speech production domain. This study proposes a new approach which combines stress classification and speech recognition functions into one algorithm. This is accomplished by generalizing the one-dimensional (1-D) hidden Markov model to an N -channel hidden Markov model (N -channel HMM). Here, each stressed speech production style under consideration is allocated a dimension in the N -Channel HMM to model each perceptually induced stress condition. It is shown that this formulation better integrates perceptually induced stress effects for stress independent recognition. This is due to the sub-phoneme (state level) stress classification that is implicitly performed by the algorithm. The proposed N channel stress independent HMM method is compared to a previously established one-channel stress dependent isolated word recognition system yielding a 73.8% reduction in error rate. In addition, an 82.7% reduction in error rate is observed compared to the common one-channel neutral trained recognition approach.
منابع مشابه
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملBimodal speech recognition using coupled hidden Markov models
In this paper we present a bimodal speech recognition system in which the audio and visual modalities are modeled and integrated using coupled hidden Markov models (CHMMs). CHMMs are probabilistic inference graphs that have hidden Markov models as sub-graphs. Chains in the corresponding inference graph are coupled through matrices of conditional probabilities modeling temporal influences betwee...
متن کاملDocument Image Decoding Using Markov Source Models
This paper describes a communication theory approach to document image recognition, patterned after the use of hidden Markov models in speech recognition. In general, a document recognition problem is viewed as consisting of three elements— an image generator, a noisy channel and an image decoder. A document image generator is a Markov source (stochastic finite-state automaton) that combines a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 7 شماره
صفحات -
تاریخ انتشار 1999